LT6010

features

- $35 \mu \mathrm{~V}$ Maximum Offset Voltage
- 110pA Maximum Input Bias Current
- $135 \mu \mathrm{~A}$ Supply Current
- Rail-to-Rail Output Swing
- $12 \mu \mathrm{~A}$ Supply Current in Shutdown
- 120dB Minimum Voltage Gain ($\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$)
- $0.8 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ Maximum $\mathrm{V}_{\text {os }}$ Drift
- $14 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Input Noise Voltage
- 2.7 V to $\pm 18 \mathrm{~V}$ Supply Voltage Operation
- Operating Temperature Range: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Space Saving $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ DFN Package

APPLICATIONS

- Thermocouple Amplifiers
- Precision Photo Diode Amplifiers
- Instrumentation Amplifiers
- Battery-Powered Precision Systems

DESCRIPTIOn

The $\mathrm{LT}^{\circledR} 6010$ op amp combines low noise and high precision input performance with low power consumption and rail-to-rail output swing.

Input offset voltage is trimmed to less than $35 \mu \mathrm{~V}$. The low drift and excellent long-term stability guarantee a high accuracy over temperature and over time. The 110pA maximum input bias current and 120dB minimum voltage gain further maintain this precision over operating conditions.

The LT6010 works on any power supply voltage from 2.7V to 36 V , and draws only $135 \mu \mathrm{~A}$ of supply current on a 5 V supply. A power saving shutdown feature reduces supply current to $12 \mu \mathrm{~A}$. The output voltage swings to within 40 mV of either supply rail, making the amplifier a good choice for low voltage single supply operation.

The LT6010 is fully specified at 5 V and $\pm 15 \mathrm{~V}$ supplies and from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. The device is available in SO-8 and space-saving $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ DFN packages. This op amp is also available in dual (LT6011) and quad (LT6012) packages.
$\overline{\mathbf{\Sigma Y}}$, LTC and LT are registered trademarks of Linear Technology Corporation.

TYPICAL APPLICATION

Single Supply Current Source for Platinum RTD

*OMEGA F3141 1k $\Omega, 0.1 \%$ PLATINUM RTD

Distribution of Offset Voltage Drift

ABSOLUTE MAXIMUUM RATINGS (Note 1)

Total Supply Voltage (V^{+}to V^{-}) 40 V	Maximum Junction Temperature
Differential Input Voltage (Note 2) 10V	DD Package .. 125 ${ }^{\circ} \mathrm{C}$
Input Voltage, Shutdown Voltage V^{+}to V${ }^{-}$	S0-8 Package .. $150^{\circ} \mathrm{C}$
Input Current (Note 2) $\pm 10 \mathrm{~mA}$	Storage Temperature Range
Output Short-Circuit Duration (Note 3).......... Indefinite	DD Package $-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Operating Temperature Range (Note 4) .. $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	S0-8 Package $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Specified Temperature Range (Note 5) ... $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

PACKAGE/ORDER InFORMATION

TOP VIEW	ORDER PART NUMBER	TOP VIEW	ORDER PART NUMBER
	$\begin{aligned} & \text { LT6010CDD } \\ & \text { LT6010IDD } \\ & \text { LT6010ACDD } \\ & \text { LT6010AIDD } \end{aligned}$		LT6010CS8 LT6010IS8 LT6010ACS8 LT6010AIS8
DD PACKAGE	DD PART MARKING*	S8 PACKAGE 8-IEAD PLASTIC SO	S8 PART MARKING
8-LEAD ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$) PLASTIC DFN $T_{J M A X}=125^{\circ} \mathrm{C}, \theta_{J A}=160^{\circ} \mathrm{C} \mathrm{N}$ UNDERSIDE METAL INTERNALLY CONNECTED TO V (PCB CONNECTION OPTIONAL)	LADU	$\mathrm{T}_{\text {Jmax }}=150^{\circ} \mathrm{C}, \theta_{\text {JA }}=190^{\circ} \mathrm{CW}$	6010 60101 6010A 6010AI

*Temperature grades are identified by a label on the shipping container.
Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICPLCHARACTERISTGS The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{S}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=2.5 \mathrm{~V}$; R_{L} to 0 V ; SHDN $=0.2 \mathrm{~V}$, unless otherwise specified. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage (Note 7)	$\begin{aligned} & \text { LT6010AS8 } \\ & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$	\bullet		10	$\begin{aligned} & 35 \\ & 60 \\ & 75 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$
		$\begin{aligned} & \text { LT6010S8 } \\ & T_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$	\bullet		20	$\begin{gathered} 55 \\ 85 \\ 110 \end{gathered}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$
		LT6010ADD $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$	\bullet		20	$\begin{gathered} 60 \\ 85 \\ 100 \end{gathered}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$
		$\begin{aligned} & \text { LT6010DD } \\ & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	\bullet		30	$\begin{gathered} \hline 80 \\ 110 \\ 135 \\ \hline \end{gathered}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$
$\overline{\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}}$	Input Offset Voltage Drift (Note 6)	LT6010AS8, LT6010S8 LT6010ADD,LT6010DD	\bullet		$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 1.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \mu \mathrm{V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~V} / \mathrm{C} \end{aligned}$

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating

 temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $\mathrm{V}_{S}=5 \mathrm{~V}, \mathrm{OV} ; \mathrm{V}_{\mathrm{CM}}=2.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}$ to $\mathrm{OV} ; \mathrm{SHDN}=0.2 \mathrm{~V}$, unless otherwise specified. (Note 5)| SYMBOL | PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IOS | Input Offset Current (Note 7) | $\begin{aligned} & \text { LT6010AS8 } \\ & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$ | \bullet | | 20 | $\begin{aligned} & 110 \\ & 150 \\ & 200 \end{aligned}$ | pA pA pA |
| | | $\begin{aligned} & \text { LT6010S8 } \\ & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$ | $\bullet \bullet$ | | 40 | $\begin{aligned} & 200 \\ & 300 \\ & 400 \\ & \hline \end{aligned}$ | pA pA pA |
| | | $\begin{aligned} & \text { LT6010ADD } \\ & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$ | \bullet | | 20 | $\begin{aligned} & \hline 200 \\ & 300 \\ & 400 \\ & \hline \end{aligned}$ | pA pA pA |
| | | $\begin{aligned} & \text { LT6010DD } \\ & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$ | \bullet | | 40 | $\begin{aligned} & 300 \\ & 400 \\ & 500 \end{aligned}$ | pA pA pA |
| I_{B} | Input Bias Current (Note 7) | $\begin{aligned} & \text { LT6010AS8 } \\ & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$ | \bullet | | 20 | $\begin{aligned} & \pm 110 \\ & \pm 150 \\ & \pm 200 \\ & \hline \end{aligned}$ | pA pA pA |
| | | $\begin{aligned} & \text { LT6010S8 } \\ & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$ | \bullet | | 40 | $\begin{aligned} & \pm 200 \\ & \pm 300 \\ & \pm 400 \end{aligned}$ | pA pA pA |
| | | $\begin{aligned} & \text { LT6010ADD } \\ & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$ | \bullet | | 20 | $\begin{aligned} & \pm 200 \\ & \pm 300 \\ & \pm 400 \\ & \hline \end{aligned}$ | pA pA pA |
| | | $\begin{aligned} & \text { LT6010DD } \\ & T_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$ | \bullet | | 40 | $\begin{aligned} & \pm 300 \\ & \pm 400 \\ & \pm 500 \end{aligned}$ | pA pA pA |
| | Input Noise Voltage | 0.1 Hz to 10 Hz | | | 400 | | $n V_{\text {P-P }}$ |
| e_{n} | Input Noise Voltage Density | $\mathrm{f}=1 \mathrm{kHz}$ | | | 14 | | $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ |
| in_{n} | Input Noise Current Density | $\mathrm{f}=1 \mathrm{kHz}$ | | | 0.1 | | $\mathrm{pA} / \sqrt{\mathrm{Hz}}$ |
| R_{IN} | Input Resistance | Common Mode, $\mathrm{V}_{\mathrm{CM}}=1 \mathrm{~V}$ to 3.8 V Differential | | 10 | $\begin{aligned} & 120 \\ & 20 \end{aligned}$ | | $\begin{gathered} \mathrm{G} \Omega \\ \mathrm{M} \Omega \end{gathered}$ |
| $\mathrm{ClN}_{\text {IN }}$ | Input Capacitance | | | | 4 | | pF |
| $\mathrm{V}_{\text {CM }}$ | Input Voltage Range (Positive) Input Voltage Range (Negative) | Guaranteed by CMRR Guaranteed by CMRR | | 3.8 | $\begin{gathered} 4 \\ 0.7 \\ \hline \end{gathered}$ | 1 | V |
| CMRR | Common Mode Rejection Ratio | $\mathrm{V}_{\text {CM }}=1 \mathrm{~V}$ to 3.8 V | \bullet | 107 | 135 | | dB |
| | Minimum Supply Voltage | Guaranteed by PSRR | \bullet | | 2.4 | 2.7 | V |
| PSRR | Power Supply Rejection Ratio | $\mathrm{V}_{S}=2.7 \mathrm{~V}$ to $36 \mathrm{~V}, \mathrm{~V}_{C M}=1 / 2 \mathrm{~V}_{S}$ | \bullet | 112 | 135 | | dB |
| $\mathrm{A}_{\text {VOL }}$ | Large-Signal Voltage Gain | $\begin{aligned} & R_{L}=10 k, V_{\text {OUT }}=1 \mathrm{~V} \text { to } 4 \mathrm{~V} \\ & R_{L}=2 k, V_{\text {OUT }}=1 \mathrm{~V} \text { to } 4 \mathrm{~V} \end{aligned}$ | \bullet | $\begin{aligned} & 300 \\ & 250 \end{aligned}$ | $\begin{aligned} & 2000 \\ & 2000 \\ & \hline \end{aligned}$ | | $\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$ |
| $\overline{V_{\text {OUT }}}$ | Maximum Output Swing (Positive, Referred to V^{+}) | No Load, 50mV Overdrive | \bullet | | 35 | $\begin{aligned} & 55 \\ & 65 \\ & \hline \end{aligned}$ | mV mV |
| | | $I_{\text {SOURCE }}=1 \mathrm{~mA}, 50 \mathrm{mV}$ Overdrive | \bullet | | 120 | $\begin{aligned} & 170 \\ & 220 \end{aligned}$ | mV mV |
| | Maximum Output Swing (Negative, Referred to OV) | No Load, 50mV Overdrive | \bullet | | 40 | $\begin{aligned} & 55 \\ & 65 \\ & \hline \end{aligned}$ | mV mV |
| | | $\mathrm{I}_{\text {SINK }}=1 \mathrm{~mA}, 50 \mathrm{mV}$ Overdrive | \bullet | | 150 | $\begin{aligned} & 225 \\ & 275 \end{aligned}$ | mV mV |

3

ELECTRACPLCHARACTERISTACS The o denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_{A}=25^{\circ} \mathrm{C} . \mathrm{V}_{S}=5 \mathrm{~V}, 0 \mathrm{~V}$; $\mathrm{V}_{\mathrm{CM}}=2.5 \mathrm{~V}$; R_{L} to 0 V ; SHDN $=0.2 \mathrm{~V}$, unless otherwise specified. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{I}_{\text {S }}$	Output Short-Circuit Current (Note 3)	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, 1 \mathrm{~V}$ Overdrive (Source)	\bullet	$\begin{gathered} 10 \\ 4 \end{gathered}$	14		mA
		$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V},-1 \mathrm{~V}$ Overdrive (Sink)	-	10 4	21		mA
SR	Slew Rate	$\begin{aligned} & A_{V}=-10, R_{F}=50 \mathrm{k}, \mathrm{R}_{G}=5 \mathrm{k} \\ & \mathrm{~T}_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & T_{A}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$	\bullet	0.06 0.05 0.04	0.09		$\mathrm{V} / \mu \mathrm{s}$ $\mathrm{V} / \mu \mathrm{s}$ $\mathrm{V} / \mu \mathrm{S}$
GBW	Gain Bandwidth Product	$f=10 \mathrm{kHz}$	\bullet	$\begin{aligned} & 250 \\ & 225 \end{aligned}$	330		kHz kHz
t_{s}	Settling Time	$\mathrm{A}_{\mathrm{V}}=-1,0.01 \%, \mathrm{~V}_{\text {OUT }}=1.5 \mathrm{~V}$ to 3.5 V			45		$\mu \mathrm{S}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Rise Time, Fall Time	$A_{V}=1,10 \%$ to $90 \%, 0.1 \mathrm{~V}$ Step			1		$\mu \mathrm{S}$
ISHDN	SHDN Pin Current	SHDN $\leq \mathrm{V}^{-}+0.2 \mathrm{~V}$ (On)	\bullet			0.25	$\mu \mathrm{A}$
		SHDN $=\mathrm{V}^{-}+2.0 \mathrm{~V}$ (0ff)	\bullet		15	25	$\mu \mathrm{A}$
tsHDN	SHDN Turn-On, Turn-Off Time	$\begin{aligned} & \hline \text { SHDN }=V^{-}(0 n) \text { to } V^{-}+2.0 V(0 f f) \\ & \text { SHDN }=V^{-}+2.0 V \text { (Off) to } V^{-}(0 n) \\ & \hline \end{aligned}$			$\begin{aligned} & 25 \\ & 25 \end{aligned}$		$\mu \mathrm{S}$ $\mu \mathrm{S}$
I_{S}	Supply Current	$\begin{aligned} & \text { SHDN } \leq \mathrm{V}^{-}+0.2 \mathrm{~V}(\mathrm{On}) \\ & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$	\bullet		135	$\begin{aligned} & 150 \\ & 190 \\ & 210 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
		SHDN $=\mathrm{V}^{-}+2.0 \mathrm{~V}$ (0ff)	\bullet		12	$\begin{aligned} & 25 \\ & 50 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$

The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$. $V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{OV}, \mathrm{R}_{\mathrm{L}}$ to 0 V ; SHDN $=-14.8 \mathrm{~V}$, unless otherwise specified. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage (Note 7)	$\begin{aligned} & \text { LT6010AS8 } \\ & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	\bullet	10	$\begin{gathered} 60 \\ 80 \\ 110 \\ \hline \end{gathered}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$
		$\begin{aligned} & \text { LT6010S8 } \\ & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	\bullet	20	$\begin{gathered} 85 \\ 120 \\ 160 \\ \hline \end{gathered}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$
		$\begin{aligned} & \text { LT6010ADD } \\ & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	\bullet	20	$\begin{gathered} 85 \\ 105 \\ 135 \end{gathered}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$
		$\begin{aligned} & \text { LT6010DD } \\ & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$	\bullet	30	$\begin{aligned} & 110 \\ & 145 \\ & 185 \\ & \hline \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$
$\Delta \mathrm{V}_{0 S} / \Delta \mathrm{T}$	Input Offset Voltage Drift (Note 6)	$\begin{aligned} & \text { LT6010AS8, LT6010S8 } \\ & \text { LT6010ADD,LT6010DD } \end{aligned}$	\bullet	$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 1.3 \end{aligned}$	$\begin{aligned} & \mu \mathrm{V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{l} \mathrm{OS}^{\text {S }}$	Input Offset Current (Note 7)	$\begin{aligned} & \text { LT6010AS8 } \\ & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$	\bullet	20	$\begin{aligned} & 110 \\ & 150 \\ & 200 \\ & \hline \end{aligned}$	pA pA pA
		$\begin{aligned} & \text { LT6010S8 } \\ & T_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$	\bullet	40	$\begin{aligned} & 200 \\ & 300 \\ & 400 \\ & \hline \end{aligned}$	pA $p A$ $p A$
		$\begin{aligned} & \text { LT6010ADD } \\ & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$	\bullet	20	$\begin{aligned} & 200 \\ & 300 \\ & 400 \end{aligned}$	pA pA pA
						6010 f

4

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}$ to OV ; SHDN $=-14.8 \mathrm{~V}$, unless otherwise specified. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Ios	Input Offset Current (Note 7)	$\begin{aligned} & \text { LT6010DD } \\ & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$	\bullet		40	$\begin{aligned} & 300 \\ & 400 \\ & 500 \\ & \hline \end{aligned}$	pA pA pA
I_{B}	Input Bias Current (Note 7)	$\begin{aligned} & \text { LT6010AS8 } \\ & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	\bullet		20	$\begin{aligned} & \pm 110 \\ & \pm 150 \\ & \pm 200 \\ & \hline \end{aligned}$	pA pA pA
		$\begin{aligned} & \text { LT6010S8 } \\ & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	\bullet		40	$\begin{aligned} & \pm 200 \\ & \pm 300 \\ & \pm 400 \\ & \hline \end{aligned}$	pA pA pA
		$\begin{aligned} & \text { LT6010ADD } \\ & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	\bullet		20	$\begin{aligned} & \pm 200 \\ & \pm 300 \\ & \pm 400 \\ & \hline \end{aligned}$	pA pA pA
		$\begin{aligned} & \text { LT6010DD } \\ & \begin{array}{l} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{array} \end{aligned}$	\bullet		40	$\begin{aligned} & \pm 300 \\ & \pm 400 \\ & \pm 500 \end{aligned}$	pA pA pA
	Input Noise Voltage	0.1 Hz to 10 Hz			400		$\mathrm{n} \mathrm{V}_{\text {P-P }}$
e_{n}	Input Noise Voltage Density	$\mathrm{f}=1 \mathrm{kHz}$			13		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input Noise Current Density	$\mathrm{f}=1 \mathrm{kHz}$			0.1		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\mathrm{R}_{\text {IN }}$	Input Resistance	Common Mode, $\mathrm{V}_{\mathrm{CM}}= \pm 13.5 \mathrm{~V}$ Differential		50	$\begin{aligned} & 400 \\ & 20 \end{aligned}$		$\begin{aligned} & \mathrm{G} \Omega \\ & \mathrm{M} \Omega \end{aligned}$
$\mathrm{ClN}^{\text {a }}$	Input Capacitance				4		pF
$\mathrm{V}_{\text {CM }}$	Input Voltage Range	Guaranteed by CMRR	\bullet	± 13.5	± 14		V
CMRR	Common Mode Rejection Ratio	$V_{\text {CM }}=-13.5 \mathrm{~V}$ to 13.5V	\bullet	$\begin{aligned} & 115 \\ & 112 \\ & \hline \end{aligned}$	135		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
	Minimum Supply Voltage	Guaranteed by PSRR	\bullet		± 1.2	± 1.35	V
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 1.35 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$	\bullet	112	135		dB
$A_{\text {VOL }}$	Large-Signal Voltage Gain	$R_{L}=10 \mathrm{k}, \mathrm{V}_{\text {OUT }}=-13.5 \mathrm{~V}$ to 13.5 V	\bullet	$\begin{gathered} 1000 \\ 600 \end{gathered}$	2000		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
		$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k}, \mathrm{V}_{\text {OUT }}=-13.5 \mathrm{~V}$ to 13.5 V	\bullet	$\begin{aligned} & 500 \\ & 300 \end{aligned}$	1500		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
V OUT	Maximum Output Swing (Positive, Referred to V^{+})	No Load, 50mV Overdrive	\bullet		45	$\begin{gathered} 80 \\ 100 \end{gathered}$	mV mV
		ISOURCE $=1 \mathrm{~mA}, 50 \mathrm{mV}$ Overdrive	\bullet		140	$\begin{aligned} & 195 \\ & 240 \end{aligned}$	mV mV
	Maximum Output Swing (Negative, Referred to OV)	No Load, 50mV Overdrive	\bullet		45	$\begin{gathered} \hline 80 \\ 100 \\ \hline \end{gathered}$	mV mV
		$\mathrm{I}_{\text {SINK }}=1 \mathrm{~mA}, 50 \mathrm{mV}$ Overdrive	\bullet		150	$\begin{aligned} & 250 \\ & 300 \end{aligned}$	mV mV
ISC	Output Short-Circuit Current (Note 3)	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, 1 \mathrm{~V}$ Overdrive (Source)	\bullet	$\begin{gathered} 10 \\ 5 \end{gathered}$	15		mA mA
		$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V},-1 \mathrm{~V}$ Overdrive (Sink)	\bullet	$\begin{gathered} 10 \\ 5 \end{gathered}$	20		mA mA

5
 temperature range, otherwise specifications are at $T_{A}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}$ to 0 V ; $\mathrm{SHDN}=-14.8 \mathrm{~V}$, unless otherwise specified. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
SR	Slew Rate	$\begin{aligned} & A_{V}=-10, R_{F}=50 \mathrm{k}, \mathrm{R}_{G}=5 \mathrm{k} \\ & \mathrm{~T}_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & T_{A}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$	\bullet	$\begin{aligned} & 0.08 \\ & 0.0 \\ & 0.0 \end{aligned}$	0.11		$\mathrm{V} / \mu \mathrm{s}$ V/us $\mathrm{V} / \mu \mathrm{s}$
GBW	Gain Bandwidth Product	$\mathrm{f}=10 \mathrm{kHz}$	\bullet	$\begin{aligned} & 275 \\ & 250 \end{aligned}$	350		$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$
$\mathrm{t}_{\text {s }}$	Settling Time	$A_{V}=-1,0.01 \%, V_{\text {OUT }}=0 \mathrm{~V}$ to 10 V			85		$\mu \mathrm{S}$
t_{r}, t_{f}	Rise Time, Fall Time	$A_{V}=1,10 \%$ to $90 \%, 0.1 \mathrm{~V}$ Step			1		$\mu \mathrm{S}$
ISHDN	SHDN Pin Current	SHDN $\leq \mathrm{V}^{-}+0.2 \mathrm{~V}$ (On)	\bullet			0.25	$\mu \mathrm{A}$
		SHDN $=\mathrm{V}^{-}+2.0 \mathrm{~V}$ (0ff)	\bullet		15	25	$\mu \mathrm{A}$
$\mathrm{t}_{\text {SHDN }}$	SHDN Turn-On, Turn-Off Time	$\begin{aligned} & \text { SHDN }=V^{-}(0 n) \text { to } V^{-}+2.0 V(0 f f) \\ & S H D N N=V^{-}+2.0 V \text { (Off) to } V^{-}(0 n) \end{aligned}$			$\begin{aligned} & 25 \\ & 25 \end{aligned}$		$\mu \mathrm{S}$ $\mu \mathrm{S}$
I_{S}	Supply Current	$\begin{aligned} & \text { SHDN } \leq \mathrm{V}^{-}+0.2 \mathrm{~V}(\mathrm{On}) \\ & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$	\bullet		260	$\begin{aligned} & 330 \\ & 380 \\ & 400 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
		SHDN $=\mathrm{V}^{-}+2.0 \mathrm{~V}$ (0ff)			18	50	$\mu \mathrm{A}$

Note 1: Absolute Maximum Ratings are those beyond which the life of the device may be impaired.
Note 2: The inputs are protected by back-to-back diodes and internal series resistors. If the differential input voltage exceeds 10 V , the input current must be limited to less than 10 mA .
Note 3: A heat sink may be required to keep the junction temperature below absolute maximum ratings.
Note 4: Both the LT6010C and LT6010l are guaranteed functional over the operating temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
Note 5: The LT6010C is guaranteed to meet the specified performance
from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ and is designed, characterized and expected to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ but is not tested or QA sampled at these temperatures. The LT60101 is guaranteed to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
Note 6: This parameter is not 100% tested.
Note 7: The specifications for $\mathrm{V}_{O S}, \mathrm{I}_{\mathrm{B}}$ and $\mathrm{I}_{0 S}$ depend on the grade and on the package. The following table clarifies the notations used in the specification table:

	Standard Grade	A Grade
S8 Package	LT6010S8	LT6010AS8
DFN Package	LT6010DD	LT6010ADD

TYPICAL PGRFORMANCE CHARACTGRISTICS

TYPICAL PGRFORmANCE CHARACTERISTICS

TYPICAL PGRFORmANCE CHARACTERISTICS

6010 G14
Settling Time vs Output Step

THD + Noise vs Frequency

Settling Time vs Output Step

6010 G20

PSRR vs Frequency

TYPICAL PGRFORmANCE CHARACTERISTICS

Gain vs Frequency, $A_{V}=1$

Gain vs Frequency, $A_{v}=-1$

6010 G26
Large-Signal Transient Response

Gain and Phase vs Frequency

Supply Current in Shutdown Mode vs Temperature

Rail-to-Rail Output Swing

APPLICATIONS INFORMATION

Preserving Input Precision

Preserving the input accuracy of the LT6010 requires that the applications circuit and PC board layout do not introduce errors comparable to or greater than the $20 \mu \mathrm{~V}$ typical offset of the amplifier. Temperature differentials across the input connections can generate thermocouple voltages of 10 's of microvolts, so the connections to the input leads should be short, close together, and away from heat dissipating components. Air currents across the board can also generate temperature differentials.

The extremely low input bias currents (20pA typical) allow high accuracy to be maintained with high impedance sources and feedback resistors. The LT6010 low input bias currents are obtained by a cancellation circuit onchip. The input bias currents are permanently trimmed at wafer testing to a low level. Do not try to balance the input resistances in each input lead; instead, keep the resistance at either input as low as possible for maximum accuracy.

Leakage currents on the PC board can be higher than the LT6010's input bias current. For example, $10 \mathrm{G} \Omega$ of leakage between a 15 V supply lead and an input lead will generate 1.5 nA ! Surround the inputleads by a guard ring, driven to the same potential as the input common mode, to avoid excessive leakage in high impedance applications.

Input Protection

The LT6010 features on-chip back-to-back diodes between the input devices, along with 500Ω resistors in series with either input. This internal protection limits the input current to approximately 10 mA (the maximum
allowed) for a 10 V differential input voltage. Use additional external series resistors to limit the input current to 10 mA in applications where differential inputs of more than 10 V are expected. For example, a 1 k resistor in series with each input provides protection against 30V differential voltage.

Input Common Mode Range

The LT6010 output is able to swing nearly to each power supply rail (rail-to-rail out), but the input stage is limited to operating between $\mathrm{V}^{-}+1 \mathrm{~V}$ and $\mathrm{V}^{+}-1.2 \mathrm{~V}$. Exceeding this common mode range will cause the gain to drop to zero, however no phase reversal will occur.

Total Input Noise

The LT6010 amplifier contributes negligible noise to the system when driven by sensors (sources) with impedance between $20 \mathrm{k} \Omega$ and $1 \mathrm{M} \Omega$. Throughout this range, total input noise is dominated by the 4 kTR S noise of the source. If the source impedance is less than $20 \mathrm{k} \Omega$, the input voltage noise of the amplifier starts to contribute with a minimum noise of $14 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ for very low source impedance. Ifthe source impedance is more than $1 \mathrm{M} \Omega$, the input current noise of the amplifier, multiplied by this high impedance, starts to contribute and eventually dominate. Total input noise spectral density can be calculated as:

$$
v_{n(T O T A L)}=\sqrt{e_{n}^{2}+4 k T R_{S}+\left(i_{n} R_{S}\right)^{2}}
$$

where $e_{n}=14 n V / \sqrt{H z}, i_{n}=0.1 p A / \sqrt{H z}$ and R_{S} the total impedance at the input, including the source impedance.

APPLICATIONS Information

Offset Voltage Adjustment

The input offset voltage of the LT6010 and its drift with temperature are permanently trimmed at wafer testing to the low level as specified in the electrical characteristic. However, iffurther adjustment of $V_{0 S}$ is desired, nulling with a 50k potentiometer is possible and will not degrade drift with temperature. Trimming to a value other than zero
creates a drift of $\left(\mathrm{V}_{\mathrm{OS}} / 300 \mu \mathrm{~V}\right) \mu \mathrm{V} /{ }^{\circ} \mathrm{C}$, e.g., if $\mathrm{V}_{\text {oS }}$ is adjusted to $300 \mu \mathrm{~V}$, the change in drift will be $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. The adjustment range with a 50 k pot is approximately $\pm 0.9 \mathrm{mV}$ (see Figures 1 A and 1B). The sensitivity and resolution of the nulling can be improved by using a smaller pot in conjunction with fixed resistors. The configuration shown has an approximate nulling range of $\pm 150 \mu \mathrm{~V}$ (see Figures 2 A and 2 B).

Standard Adjustment

Figure 1A

Figure 2A

Figure 1B

Improved Sensitivity Adjustment

Figure 2B

APPLICATIONS InFORMATION

Shutdown

The LT6010 can be put into shutdown mode to conserve power. When the SHDN pin is biased at less than 0.2 V above the negative supply, the part operates normally. When pulled 2 V or more above V^{-}, the supply current drops to about $12 \mu \mathrm{~A}$, shutting down the op amp.

The output of the LT6010 op amp is not isolated from the inputs while in shutdown mode. Therefore, this shutdown feature cannot be used for multiplexing applications.
There is an internal 85 k resistor at the SHDN pin. If the SHDN voltage source is more than 2 V above the negative supply, an external series resistor can be placed between the source and SHDN pin to reduce SHDN pin current (see Figure 3). For an example of suggested values see Table 1. The resistors listed ensure that the voltage at the SHDN pin is 2 V above the negative supply.

Table 1

$\mathbf{V}_{\text {SHDN }}(\mathbf{V})$	$\mathbf{R}_{\text {SHDN }}(\mathbf{k} \Omega)$
2	NONE
3	77 k
4	153 k
5	230 k

Figure 3

Capacitive Loads

The LT6010 can drive capacitive loads up to 500pF in unity gain. The capacitive load driving capability increases as the amplifier is used in higher gain configurations. A small series resistance between the output and the load further increases the amount of capacitance that the amplifier can drive.

Rail-to-Rail Operation

The LT6010 outputs can swing to within millivolts of either supply rail, but the inputs cannot. However, for most op amp configurations, the inputs need to swing less than the outputs. Figure 4 shows the basic op amp configurations, lists what happens to the op amp inputs and specifies whether or not the op amp must have rail-to-rail inputs. Select a rail-to-rail input op amp only when really necessary, because the input precision specifications are usually inferior.

INVERTING: $A_{V}=-R_{F} / R_{G}$ OP AMP INPUTS DO NOT MOVE, BUT ARE FIXED AT DC BIAS POINT V REF

INPUT DOES NOT HAVE TO BE RAIL-TO-RAIL

NONINVERTING: $A_{v}=1+R_{F} / R_{G}$ INPUTS MOVE AS MUCH AS VIN, BUT THE OUTPUT MOVES MORE

INPUT MAY NOT HAVE TO BE RAIL-TO-RAIL

NONINVERTING: $A_{v}=1$ INPUTS MOVE AS MUCH AS THE OUTPUT

INPUT MUST BE RAIL-TO-RAIL FOR OVERALL CIRCUIT RAIL-TO-RAIL PERFORMANCE

Figure 4. Some Op Amp Configurations Do Not Require Rail-to-Rail Inputs to Achieve Rail-to-Rail Outputs

SIMPLIFIED SCHEmATIC

DD Package
8-Lead Plastic DFN (3mm $\times 3 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1698)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS

BOTTOM VIEW—EXPOSED PAD

NOTE:

1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE MO-229 VARIATION OF (WEED-1)
2. ALL DIMENSIONS ARE IN MILLIMETERS
3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE

MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15 mm ON ANY SIDE
4. EXPOSED PAD SHALL BE SOLDER PLATED

PACKAGE DESCRIPTION

S8 Package

8-Lead Plastic Small Outline (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1610)

TYPICAL APPLICATION

Precision JFET Input Transimpedance Photodiode Amplifier

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT6011/6012	Dual/Quad Precision Op Amps	$135 \mu A$, Rail-to-Rail Output
LT1001	Low Power, Picoamp Input Precision Op Amp	250 pA Input Bias Current
LT1880	Rail-to-Rail Output, Picoamp Input Precision Op Amp	CLoad up to 1000pF

